ONE TIME EXIT SCHEME

		 	 			A CONTRACTOR OF THE CONTRACTOR
USN	- 7 					10AE71

Seventh Semester B.E. Degree Examination, April 2018 Control Engineering

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Write notes on open loop system and closed loop system and also list out the merits and demerits of open loop and closed loop systems. (08 Marks)
 - b. Describe about the PI, PD and PID controllers with suitable diagrams. (12 Marks)
- 2 a. Derive the F-V and F-I analogies.

(10 Marks)

b. A dynamic vibration absorber is shown in Fig.Q2(b). Obtain the differential equations and also draw the analogous electrical circuit based on F-V analogy.

a. Determine the overall transfer function $\frac{C(S)}{R(S)}$ for the following system.

Fig.Q3(a)

(10 Marks)

(10 Marks)

b. By using Mason's gain formula, find the overall gain $\frac{C(S)}{R(S)}$ for the signal flow graph.

- a. Explain about the special cases of Routh's criterion with suitable examples. (05 Marks
 - b. Examine the stability of the system having characteristic equation by using RH method $F(s) = s^6 + 3s^5 + 4s^4 + 6s^3 + 5s^2 + 3s + 2 = 0.$ (10 Marks
 - Derive the expression for peak time for an under damped second order system. (05 Marks

The open loop transfer function of a unity feedback system is given by 5

$$G(s) = \frac{1}{s(s+1)(1+2s)}$$

Sketch the polar plot and determine the gain margin and phase margin. (12 Marks

- b. Write down the steps to solve the problems by using Nyquist criterion.

Write short notes on M and N circles.

(04 Marks (04 Marks

Sketch the Bode plot for following transfer function: 6

$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$$
 (16 Marks

Define gain margin and phase margin. b.

- (04 Marks
- Sketch the root locus for the system, whose open loop transfer function is given by 7

G(s)H(s) =
$$\frac{K}{s(s+3)(s+5)}$$
 (15 Marks

Describe the general rules for the construction of root locus.

- (05 Marks
- Explain the need for compensation and also describe about the lag-lead compensator wit 8 suitable diagrams. (12 Marks
 - Consider the system with state equation. Estimate the state controllability by Kalman's tes

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 (08 Marks)